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Abstract. 
Randomization is a standard technique for improving the per- 
formance of local search algorithms for constraint satisfac- 
tion. However, it is well-known that local search algorithms 
are sessitive to the noise values selected. We investigate the 
use of an adaptive noise mechanism in an iterative repair- 
based planner/scheduler for spacecraft operations. Prelimi- 
nary results indicate that adaptive noise makes the use of ran- 

the default behavior of a scheduling algorithm by deriving 
new domain-specific heuristics (this process is often initi- 
ated when it is discovered that domain-independent heuris- 
tics by themselves are failing to perform adequately in prac- 
tice). Domain-specific heuristics for real-world scheduling 
systems require a more compleTa domain-dependent repre- 
sentation. For example, in the ASPEN scheduler, it is possi- 

domized repair moves safe and robust; that is, using adaptive 
noise makes it possible to consistently achieve performance 
comparable with the best tuned noise setting without the need 
for manually tuning the noise parameter. 

ble to implement a heuristic that specifies that a certain type 
of activity should be scheduled 
it is known that this type of acti 
constraints on the placement of other activities). 

, 

1 Introduction 
Local search has been shown to be an effective algorithm for 
solving many difficult constraint satisfaction and combina- 
torial optimization problems. Deployed space applications 
that apply local search include the Hubble scheduler (John- 
ston and Miller 1994) and the on-board CASPER scheduler 
in the EO-1 Autonomous Science Experiment (Chien et al. 
2003). 

The performance of local search in any given domain 
usually depends greatly on the quality of domain-specific 
heuristics that guide the behavior of the algorithm. Such 
heuristics include procedures for selecting the next variable 
to modify, as well as procedures for selecting new values to 
apply to the selected variable. 

Some local search heuristics are domain-independent, and 
can be concisely expressed in abstract terms, such as the 
ubiquitous greedy heuristic (make the change to the schedule 
that results in the neighboring state with the best objective 
function), or the well known min-conflicts heuristic (Minton 
et al. 1992) for constraint satisfaction problems (select some 
variable that is involved in a conflict, and assign a value to 
u such that the total number of conflicts remaining is mini- 
mized). 

However, because scheduling problems are generally 
intractable (NP-hard), such elegant, domain-independent 
heuristics can not always be guaranteed to yield adequate 
performance. Domain-specific heuristics are usually the 
product of an iterative process in which domain experts 
and scheduling algorithm developers collaborate to improve 

Although scheduling algorithm developers can develop 
heuristics which are usually effective 
performs better with the heuristic th 
tic), it is inherent in the nature o 
ally mean “rules of thumb”) that 
fective. For example, local search 
heavily on greedy heuristics can 
optima. Additional mechanisms are necessary to counter- 
balance the focusing effect of heuristics. One such mech- 
anism is randomization, or noise, i.e., a mechanism that 
sometimes (with probability p )  forces the local search algo- 
rithm to make a random move instead of one that would be 
prescribed by its heuristics. It is well-known that noise can 
significantly improve the performance of local search. For 
example, empirical studies such as (Selman and Kautz 1993; 
Selman et al. 1994) have shown that the addition of random- 
ized moves significantly improves the performance of SAT 
local search. 

Noise mechanisms have traditionally been static. That 
is, the probability of making a random noise p at any given 
point in time is determined a priori by setting the noise pa- 
rameter p before the search algorithm is run. However, it 
has been shown that the performance of local search mecha- 
nisms is significantly affected by the value of this static noise 
parameter (c.f. (McAllester et al. 1997)). It was recently 
proposed that an adaptive noise mechanism which automat- 
ically adjusts the noise level depending on the perceived 
progress of the search algorithm may result in performance 
that is comparable to, or even better than a hand-tuned static 
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noise setting (Hoos 2002). 
In this paper, we consider the problem of enhancing the 

robustness and performance of a scheduling algorithm for 
spacecraft operations using noise mechanisms. First, we 
give a brief overview of the ASPEN system for spacecraft 
operations planninglscheduling. Then, we characterize the 
impact of the standard, static noise on ASPEN local search 
for two prototype domains. Finally, we show that an adap- 
tive noise mechanism can achieve performance that is com- 
petitive with static noise but is significantly more robust. 

2 Iterative Repair Scheduling in ASPEN 
ASPEN is a planning and scheduling system for spacecraft 
operations (Chien et al. 2000), which has recently been de- 
ployed on board the EO- l earth imaging satellite (Chien et 
al. 2003). In an ASPEN schedule, anything that indicates 
an “incomplete” or “unsatisfactory” schedule is considered 
a conflict (e.g., unscheduled activities, oversubscription of 
resources). The task of the scheduling algorithm is to pro- 
duce a schedule with no conflicts (or alternatively, produce a 
schedule that maximizes some objective function (Rabideau 
et al. 2000)). 

While ASPEN is an application framework and has been 
used to implement a range of planning and scheduling 
paradigms, most commonly users have utilized the iterative 
repair approach in ASPEN (Rabideau et al. 1999). The AS- 
PEN Iterative repair algorithm works as follows: At each 
step, ASPEN chooses a conflict to resolve by applying a 
conflict selection heuristic. Then, a repair method selection 
heuristic is applied to decide how ASPEN will attempt to 
resolve the conflict (e.g., by moving an activity elsewhere, 
removinglunscheduling an activity, etc). The selected repair 
method may entail further choices, and at each such decision 
point, decisions are guided by a heuristic that is applicable 
at that decision point. Thus, each step in ASPEN iterative 
repair can be characterized by the application of a decision 
tree, where choices at the decision nodes are guided by a 
heuristic that applies at that node. The root node is conflict 
selection, the second level decision node is repair method 
selection, and so on. 

For every decision node, ASPEN implements a domain- 
independent, default heuristic. However, as noted in Section 
1, domain-independent heuristics sometimes fail. There- 
fore, ASPEN provides a mechanism for users to implement 
a domain-specific heuristic that is used instead of the default 
heuristic. 

We recently performed an analysis of 30 prototype and 
fielded ASPEN applications in order to identify opportu- 
nities for improvements to the scheduling algorithm. This 
analysis revealed that users tended to rely on the default 
heuristic for most of the decision points. However, we found 
that in more than a third of the applications, the user had im- 
plemented a domain-specific repair method selection heuris- 
tic function, indicating that it might be worthwhile to focus 

our efforts on that particular choice point. 

2.1 Experimental Domains 
In the rest of the paper, we describe experiments performed 
with ASPEN in order to improve its repair method selection 
procedure by adding randomization to the heuristic. The ex- 
periments are performed on two prototype domains, ST-4 

The ST-4 domain models the landed operations of a 
spacecraft designed to land on a comet and return a sample 
to earth. The model has 6 shared resources, 6 state variables, 
and 22 activity types. Resources and states include battery 
level, bus power, communications, orbiter-in-view, drill lo- 
cation, drill state, oven states for a primary and backup oven 
state, camera state, and RAM. There are two activity groups 
that correspond to different types of experiments: mining 
and analyzing a sample, and taking a picture. The instance 
used in this paper has 4 mining activities and 5 picture ex- 
periments to be scheduled. 

The EO-1 domain was a early prototype for the recently 
deployed ASE on-board scheduler (Chien et aE. 2003). EO- 
1 is an earth imaging satellite featuring an advanced multi- 
spectral imaging device. EO- 1 mission operations consists 
of managing spacecraft operability constraints (power, ther- 
mal, pointing, buffers, consumables, telecommunications, 
etc.) and science goals (imaging of specific targets within 
particular observation parameters f particular difficulty 
is manqging the downlinks as the unt of data generated 
by the imaging device is quite large and uplink opportunities 
are a limited resource. The EO- 1 domain models the opera- 
tions of the satellite for a two-day horizoh. It consists of 14 
resources, 10 state variables, and 38 different activity types. 
The instance used in our experiment$ includes 7 downlinks. 

3 Adding noise to repair method selection 
It is well-known that adding randomness, or noise to a local 
search algorithm can potentially improve its performance. 
That is, instead of always making a decision based on a 
heuristic, the search algorithm can make a random move 
with probability p .  Traditionally, this noise mechanism de- 
scribed above is static - the value of p is determined prior to 
running the algorithm, and does not change during the run. 

ASPEN provides a randomization parameter for each de- 
cision point, and a majority of ASPEN applications have ap- 
plied noise at the conflict selection andor repair method se- 
lection heuristics. In the case of the repair method selection 
heuristic, a “random decision” means that instead of choos- 
ing the repair method suggested by the heuristic, one of the 
applicable repair methods for a conflict type is selected ran- 
domly (Figure 1 shows each of the the conflict types linked 
to each of the applicable repair methods applicable to them). 

Figures 2 and 3 shows the noise response of ASPEN local 
search on one instance each of the DS-4 domain and EO-1 

and EO- 1. 



Figure 1: Hierarchy of ASPEN iterative repair decision points. The top row shows the conflict types (conflict selection decision 
chooses one of these). The second row shows the repair methods available (linked to the conflicts to which they are applicable). 
The third row and below show further decision points available, depending on the type of repair method. 

domain, respectively.’ The default-heuristic lines 
show the mean runtime required to solve the problem in- 
stance as p was varied.2. 

Figure 2 also includes a line showing the performance of 
ASPEN iterative repair using a hand-coded, domain-specific , 

repair method selection heuristic. In this case, adding static 
noise to this domain-specific heuristic only degrades the per- 
formance, and never helps. 

Note that the performance of the scheduling algorithm de- 
pends significantly on the noise setting Noise values that are 
too low or too high clearly degrades the performance of AS- 
PEN iterative repair. 

4 Adaptive Noise 
Although static noise yields significant benefits there seems 
to be room for improvement. In the previous section, we 
observed that ASPEN with static noise is very sensitive to 
the p setting. In our experiments above, we had the luxury 
of being able to determine the optimal value for p experi- 
mentally. In practice, such experimentation is usually not an 
option. Therefore, a more robust mechanism that does not 
require extensive tuning is desirable. I 

0 20 40 60 80 1W 
noise selling (p) ‘We have repeated all of the experiments here with several in- 

stances of each domain, and the results are similar. 
’In the experiments in this paper, we ran ASPEN in “repair” 

mode, where a valid “solution” is any schedule which satisfies all 
constraints, Le., all valid solutions have the same objective func- 
tion value. ASPEN also has another, preference-based optimization 
mode which can make finer distinctions among the set of solutions 
that satisfy the hard constraints (see (Rabideau et al. 2000) 

Figure 2: DS-4 Noise response: runtime vs noise level p ,  
N=loo 
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Figure 3: EO-1 Noise response: runtime vs noise level p .  
N=40 

Intuitively, heuristics that have been developed over sev- 
eral years, such as ASPENS domain-independent heuristics 
should, in principle, work most of the time. On the other 
hand, noise provides a last-resort escape mechanism when 
the heuristic occasionally Ieads to incorrect behavior. Thus, 
it seems that we should rely on the heuristics as long as they 
are working, and use noise only when necessary. 

This intuition can be directly implemented as an adup- 
tive noise mechanism for iterative repair. Hoos (Hoos 2002) 
recently proposed an adaptive noise mechanism for SAT lo- 
cal search, which can be viewed as an instance of iterative 
repair. We implemented Hoos’ mechanism in ASPEN, as 
follows: 

At the beginning of the search, the noise p is set to 0 (Le., 
at the beginning of the search, we start by relying on the 
heuristic). 

If stagnation is detected (no improvements in the objec- 
tive function within 8 steps), p is increased. When p is 
increased, it is adjusted using the update formula: p = 
p + (1 - p)$ .  Whenever progress is made, p is updated 
as: p = p - 2p4. Increases and decreases in p are asymmet- 
rical. Each time after a noise increase, there is a period of 
time while the sufficiency of the noise is tested (the delay of 
8), whereas noise decreases are applied every time there is 
an improvement. Also, the magnitude of the noise increases 

3We first implemented a similar mechanism that we developed 
independently, but then discovered Hoos’ work and found that it 
was simpler and performed just as well. 

is smaller than the magnitude of the noise decreases. 
Adaptive noise uses two control parameters, $ and 8, In- 

tuitively, $ should be large enough so that increasing the 
noise level by applying the update formula in Section 4 will 
result in a significant change. On the other hand, if q5 is too 
large, then the resulting behavior will be a degenerate policy 
where the repair algorithm switches back and forth between 
heuristic-driven and totally randomized modes. Likewise, 
8 must be small enough so that noise values can increase 
rapidly enough to minimize time wasted on fruitless appli- 
cations the heuristic; yet, 8 should be large enough that some 
time is being spent at the current noise level before further 
increasing p .  

We therefore believe that 0.1 5 q5 5 0.2 and 5 5 8 5 40 
covers a domain-independent range of intuitively “reason- 
able” settings for $ and 8. More extreme parameter settings 
would lead to behavior that does not conform with our intu- 
itions of how adaptive noise is intended to behave. 

We evaluated adaptive noise on the DS-4 and EO-1 do- 
mains, for the cross-product of parameter settings $ and 8, 
where $ E 0.10.15,0.2,0.25, 0 E 5,10,20,40. (Le., 12 
data points, each data point representing n = 100 runs for 
the DS-4 domain, n = 40 runs forEO-1 domain). 

In Figures 2 and 3, these are shown as the cluster of values 
shown for p = 5 (although p is actually adaptive). 

For DS-4, the average performance across all 12 settings 
was 0.85 seconds, with a stindad deviation of 0.05. The 
worst control parameter setting had a mean runtime of 0.926 
seconds, while the best control pat.ameter setting had a mean 
runtime of 0.777 seconds. 

For EO- 1, the average performance across the 12 settings 
was 34.90 seconds with a standard deviation of 3.08 sec- 
onds. The worst control parameter setting had a mean run- 
time of 41.89 seconds, whilethe best control parameter set- 
ting had a mean runtime of 3 1.64 seconds. 

From this we see that the performance of iterative repair 
with adaptive noise is remarkably robust, clustering close 
to the performance obtained by the best static noise setting. 
This performance seems to be quite robust with respect to 
the 4 and 8 control parameter settings, since the 12 control 
parameter sets cover the range of reasonable parameter set- 
tings. 

For DS-4, the domain-independent heuristic combined 
with adaptive noise achieves performance comparable to 
that of the hand-coded, domain-specific heuristic. 

In addition, we also ran the DS-4 model using adaptive 
noise using the same 12 sets of control parameter settings. 
For this combination of hand-coded heuristic + adaptive 
noise, the average performance across all 12 settings was 
0.63 seconds, with a standard deviation of 0.13. The worst 
control parameter setting had a mean runtime of 0.86 sec- 
onds, while the best control parameter setting had a mean 
runtime of 0.48 seconds. In this case, adaptive noise tends 
to minimizes the performance degradation observed when 



using static noise. 
All experiments reported here were run on a 2.7GHz 

Pentium-4 processor. This is orders of magnitude faster than 
on-board processors for spacecraft that are flying presently 
and in the near future. Furthermore, on-board scheduling 
systems are usually not allocated 100% of the CPU re- 
sources at any given time. In fact, our benchmarks have 
shown that the Linux workstation used here is 500-1000 
times faster than the MIPS R3000 Mongoose 5 running at 
12MHz that we are using on the EO-1 to run ASPEN for the 
ASE experiment (Chien et al. 2003). Therefore, depending 
on processing constraints, the relative disparities between 
the runtimes for the iterative repair variants considered here 
can have significant impact on spacecraft operations. 

5 Related Work 
In addition to the adaptive noise mechanism proposed by 
Hoos which was used in this work(Hoos 2002), various 
adaptive mechanisms for setting control parameters for 
searcWoptimization algorithms can be found in the Artifi- 
cial Intelligence and Operations Research literature. We de- 
scribe some of the most closely related techniques below. 

Local search with noise is similar to simulated annealing 
(Kirkpatrick et al. 1983). Simulated annealing (SA) is es- 
sentially a local search procedure that will move to a state 
that has a worse objective function value than the current 
state with some probability, where the p is dependent on 
an annealing schedule. The random moves introduced by 
noise mechanisms in iterative repair are intended to serve a 
role similar to the probabilistic acceptance of worse states 
in SA (escaping local optima or cycles). However, the ba- 
sic repairflocal search in ASPEN is inherently non-greedy 
and very different from SA. The hierarchical scheme of first 
making a non-greedy commitment to address a particular 
conflict, means that the resulting state will frequently be 
worse than the previous state, because all applicable meth- 
ods of resolving that particular conflict will lead to a worse 
state. 

Another approach to enhancing the performance of 
heuristic local search scheduling is to l e d a d a p t  a static 
heuristic strategy to optimize its expected performance on 
the class of problems for which the solver is intended 
(Gratch and Chien 1996). This is ofSine learning approach 
is complementary to the on-line adaptive approach taken 
in this paper. For example, the default heuristic could be 
learned by applying the off-line learning algorithm. 

An alternate approach to on-line improvement of local 
search is STAGE, (Boyan and Moore 2000)- which learns 
good start states for multi-start local search (local search 
which periodically “restarts” after local optima are identi- 
fied). The selection of restart states for local search is or- 
thogonal to move selection, which is addressed by adaptive 
noise. Note that STAGE depends on the identification of 
state features that can be used in the functional mapping 

between search states and objective function values. This 
may be difficult in general for a system like ASPEN due to 
the complexity of the state representation, compared to the 
problems to which STAGE has been applied so far. 

6 Conclusions 
In this paper, we showed that adding random moves (noise) 
to iterative repair can significantly improve the performance 
of an iterative-repair scheduling algorithm. However, the 
traditional, static noise mechanism requires tuning of the 
noise parameter, and we showed that in some cases (e.g., on 
the DS-4 domain using the hand-coded heuristic), non-zero 
noise can always hurt performance. 

We then showed that an adaptive noise mechanism first 
proposed for satisfiability testing (Hoos 2002) can yield per- 
formance comparable to static noise using the optimal pa- 
rameter noise value, while also demonstrating significant ro- 
bustness to control parameter variations. This is a promis- 
ing result, since for on-board applications, a mechanism that 
can adapt to unforeseen situations is preferable to mecha- 
nisms involving a control parameter that must be optimized 
a priori. 

In addition, we have shown empirically that while the per- 
formance of adaptive noise may bequite as good as using 
the optimal static noise setting, the worst-case performance 
(performance with the worst control parameter settings) is 
quite close to the best-case performance. This robustness 
is desirable for on-board operations, where mitigating the 
worst case-behavior is arguably more important than opti- 
mizing best-case behavior. 

In this paper, we have considered the application of noise 
to just one level of decision making in ASPEN heuristic re- 
pair. In future work, we will investigate how noise can be 
simultaneously, automatically tuned for all levels of deci- 
sion making, including conflict selection, repair method se- 
lection, and repair parameter value selection. 
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